Provipstroy.ru

Строительный Мастер Provipstroy.ru
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы гидравлического расчета систем отопления

Способы гидравлического расчета систем отопления

Большинство современных промышленных и жилых объектов обогревается в зимнее время за счет подключения к уже подведенному к ним централизованному теплоснабжению. Но нередки случаи, когда для обогрева жилых пространств применяются независимые (автономные) источники. При их самостоятельном монтаже не обойтись без предварительного гидравлического расчета отопления, проводимого для всего комплекса в целом.

Расчёт гидравлики отопительных каналов

Гидравлический расчет системы отопления обычно сводится к подбору диаметров труб, проложенных на отдельных участках сети. При его проведении обязательно учитываются следующие факторы:

  • величина давления и его перепады в трубопроводе при заданной скорости циркуляции теплоносителя;
  • его предполагаемый расход;
  • типовые размеры используемых трубных изделий.

При расчете первого из этих параметров важно принять во внимание мощность насосного оборудования. Ее должно хватать для преодоления гидравлического сопротивления отопительных контуров. При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом. По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов.

Расчёт параметров теплоносителя

Расчет теплоносителя сводится к определению следующих показателей:

  • скорость движения водных масс по трубопроводу с заданными параметрам;
  • их средняя температура;
  • расход носителя, связанный с требованиями к производительности отопительного оборудования.

При определении всех перечисленных параметров, касающихся непосредственно теплоносителя, обязательно учитывается гидравлическое сопротивление трубы. Принимается во внимание и наличие элементов запорной арматуры, являющихся серьезным препятствием свободному перемещению носителя. Особенно важен этот момент для систем отопления, в состав которых входят термостатические и теплообменные приборы.

Известные формулы расчета параметров теплоносителя (с учетом гидравлики) достаточно сложны и неудобны в практическом применении. В онлайн калькуляторах используется упрощенный подход, позволяющий получить результат с допустимой для этого способа погрешностью. Тем не менее перед началом монтажа важно побеспокоиться о том, чтобы приобрести насос с показателями не ниже расчетных. Лишь в этом случае появляется уверенность в том, что требования к системе по этому критерию выполнены в полной мере и что она способна обогреть помещение до комфортных температур.

Расчёт сопротивления системы и подбор циркуляционного насоса

При расчете гидравлического сопротивления системы отопления исключается вариант естественной циркуляции теплоносителя по ее контурам. Рассматривается лишь случай принудительной прогонки по тепловым контурам разветвленной сети отопительных труб. Чтобы система работала с заданной эффективностью, потребуется образец насоса, заведомо гарантирующий нужный напор. Эта величина обычно представляется как объем прокачки теплоносителя в выбранную единицу времени.

Для определения суммарной величины сопротивления, вызванного сцеплением частиц воды с внутренними поверхностями труб в магистралях, применяется следующая формула: R = 510 4 V 1.9 / d 1,32 (Па/м). Значок V в этом соотношении соответствует скорости движения потока. При проведении самостоятельных вычислений всегда предполагается, что эта формула действительна лишь для скоростей не более 1,25 метра/сек. Если пользователю известна величина текущего расхода ГСВ, допускается воспользоваться приблизительной оценкой, позволяющей определить внутреннее сечение труб из полипропилена.

По завершении основных вычислений следует обратиться к особой таблице, в которой указываются примерные сечения трубных проходов в зависимости от полученных при расчете цифр. Наиболее сложным и затратным по времени является процедура определения гидравлического сопротивления в следующих участках действующего трубопровода:

  • в зонах сопряжения его отдельных элементов;
  • в обслуживающих отопительную систему клапанах;
  • в задвижках и контрольных приборах.

После того как все искомые параметры, касающиеся рабочих характеристик теплоносителя, найдены, переходят к определению всех остальных показателей системы.

Расчёт объема воды и вместительность расширительного бака

Для расчета рабочих характеристик расширительного бачка, обязательного для любой системы отопления закрытого типа, потребуется разобраться с явлением увеличения объема жидкости в ней. Этот показатель оценивается с учетом изменения основных рабочих характеристик, включая колебания ее температуры. Она в этом случае изменяется в очень широком диапазоне – от комнатных +20 градусов и вплоть до рабочих значений в пределах 50-80 градусов.

Вычислить объем расширительного бака удастся без лишних проблем, если воспользоваться проверенной на практике приблизительной оценкой. Она основана на опыте эксплуатации оборудования, согласно которому объем расширительного бачка составляет примерно одну десятую часть от общего количества теплоносителя, циркулирующего в системе. При этом во внимание принимаются все ее элементы, включая отопительные радиаторы (батареи), а также водяную рубашку котельного агрегата. Для определения точного значения искомого показателя потребуется взять паспорт эксплуатируемого оборудования и найти в нем пункты, касающиеся емкости батарей и рабочего бака котла.

После их определения излишки теплоносителя в системе найти совсем несложно. Для этого сначала вычисляется площадь поперечного сечения полипропиленовых труб, а затем полученное значение умножается на длину трубопровода. После суммирования по всем веткам отопительной системы к ним добавляются взятые из паспорта цифры для радиаторов и котла. От итоговой суммы затем отсчитывается одна десятая часть.

Если, к примеру, полученная вместимость для бытовой системы составила около 150 литров, оценочная емкость расширительного бака будет равна примерно 15 литрам.

Определение потерь давления в трубах

Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:

  • потери в первичном контуре, обозначаемые как ∆Plk;
  • местные издержки теплоносителя (∆Plм);
  • падение давления в особых зонах, называемых “генераторами тепла” под обозначением ∆Pтг;
  • потери внутри встроенной теплообменной системы ∆Pто.

После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.

Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.

Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.

  • h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
  • λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
  • L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
  • D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
  • V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
  • Символ g – это ускорение свободного падения, равное 9,81 м/сек2.

Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:

  • V – скорость перемещения водных масс, измеряемая в метрах/секунду.
  • D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
  • Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.

Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.

При ускорении потока теплоносителя сопротивление его движению также возрастает. Одновременно с этим увеличиваются и потери в теплосети, рост которых не пропорционален вызвавшему этот эффект импульсу (он изменяется по квадратичному закону). Отсюда следует вывод: высокая скорость потока жидкости в трубопроводе не выгодна как с технической, так и с экономической точки зрения.

Как сделать гидравлический расчет системы отопления

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб. Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома. Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

Читать еще:  Какое отопление лучше: пластиковое или железное?

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику. Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Методика гидравлического расчета системы водяного отопления

Гидравлический расчет системы водяного отопления базируется на общих законах гидравлики. В настоящее время разработано 4 метода гидравлического расчета. Рассмотрим на примерах основной традиционный метод гидравлического расчета системы ЦО по удельным линейным потерям давления.

В примере 4.2 показано, что расход горячей воды в системе отопления прежде всего зависит от требуемой мощности ее 0Т от.

По архитектурно-строительным чертежам здания, для которого проектируется система отопления, производится расчет требуемой тепловой мощности отопительных приборов для каждого помещения здания, имеющего наружные ограждающие конструкции. Методика расчета трансмиссионных теплопотерь, расходов теплоты на нагрев приточного наружного воздуха в каждое помещение и наличие внутренних тепловыделений рассмотрена в главе 2.

В зависимости от особенностей здания выбирается рациональный вариант прокладки магистральных подающих и обратных трубопроводов. При наличии в здании подвального помещения магистральные трубопроводы воды располагаются по периметру подвального помещения. Если подвала в здании нет, то магистральные подающие трубопроводы располагаются на чердаке, а при его отсутствии — под потолком верхних этажей.

По принятому решению расположения магистральных трубопроводов составляется аксонометрическая схема подведения трубопроводов к отопительным приборам по помещениям.

Требуемая мощность отопительных приборов в помещениях и количество циркулирующей через них горячей воды определяются для каждого помещения.

С учетом архитектурно-строительных особенностей здания выбирается схема прокладки подающих и обратных трубопроводов. Выбор рациональной схемы распределения горячей воды по отопительным приборам определяется необходимостью создания колец циркуляции горячей воды с близкими по величине гидравлическими потерями.

Движение воды по трубопроводам происходит от сечения с большим давлением воды к сечению с меньшим давлением воды. Давление воды при движении ее по трубопроводам снижается из-за сопротивления трению воды о стенки трубопроводов и потерь в местных сопротивлениях, что для напорного участка системы отопления вычисляется по формуле:

АН = (X + 2?) ? % и; 2 , Па. (4.25)

Коэффициент сопротивления трению X зависит от режима течения, определяемого критерием Рейнольдса

и относительной шероховатостью труб к/б. Для труб отопления к = 0,2 мм, диаметры труб (1 и их длина / принимаются в м. Скорость воды и>, м/с, вычисляется в сечении трубопровода, кинематическая вязкость воды ц, м 2 /с, снижается с повышением температуры проходящей по трубопроводу воды.

Для стальных трубопроводов в системах отопления можно принять X = 0,02.

Сумма местных сопротивлений на расчетном участке сети системы отопления принимается по справочнику [44] для каждого элемента сети на расчетном участке (например, поворот трубопровода на 90° дает ?, = 1).

ри, • и^/2 — динамическое давление воды на расчетном участке. Массовая плотность воды р^, принимается по величине ее температуры:

= 95 “С, рк = 962 кг/м 3 ; гт = 70 “С, р„ = 978 кг/м 3 ; 1т = = 50 «С, р„ = 988 кг/м 3 ; /„ = 4 «С, р„ = 1000 кг/м 3 .

Скорость воды в трубах зависит от площади внутреннего сечения труб/ ,м 2 , и расхода воды кг/ч.

Площадь внутреннего сечения трубы с внутренним диаметром с!о, м, вычисляется по формуле:

Скорость воды при расходе 6/, кг/ч, вычисляется по формуле:

ткппг ’ м/с — (4 ‘ 28)

Выбор диаметров труб в системе отопления проводится по сортаменту выпускаемых промышленностью труб и максимальной скорости воды в трубах до 1,5 м/с. В табл. 4.4 приведены наиболее применяемые в системах отопления трубы и рекомендуемые предельные значения расхода по ним горячей воды.

Сортамент труб для систем отопления и рекомендуемые предельные значения расхода по ним горячей воды при twтcp = 70 °С

Часть трубопровода системы отопления, в пределах которого диаметр трубопровода и расход горячей воды сохраняются постоянными, называют участком и ему на аксонометрической схеме трубопроводов дается условное обозначение.

Гидравлическое сопротивление для каждого участка вычисляется по формуле (4.25).

При изображении аксонометрической схемы системы отопления, соединяя отдельные участки, создают кольца циркуляции. Перепад давлений, под воздействием которого происходит движение воды по кольцу циркуляции, определяется гидравлическими потерями и дополнительным гравитационным давлением, которое создается из-за изменения температуры проходящей по кольцу воды. Гравитационное циркуляционное давление под воздействием изменения массовой плотности воды с понижением ее температуры вычисляется по формуле:

где кі — высота участка, на котором горячая вода от охлаждения увеличивает массовую плотность от Рут (начало участка) до р1УГ/+, по направлению циркуляции воды.

В двухтрубных системах отопления отопительные приборы присоединяются к подающему и обратному стоякам параллельно друг другу, как это показано на схеме рис. 4.5.

К каждому отопительному прибору горячая вода приходит и выходит с одинаковой температурой їті и 1т1 и массовой плотнос-

тЪЮ Рнт! и Ршг

Однако для каждого отопительного прибора по высоте вертикального стояка будет различная величина разности высот /?, и И2 (см. рис. 4.5) от середины отопительного прибора до середины высоты водонагревателя.

Для отопительного прибора верхнего этажа здания естественное гравитационное давление по формуле (4.29) будет:

Д// е.ц| = *?Р„т2 — Р„Г|>’ Па — 4 ‘ 30 >

Для нижнего этажа оно будет:

Д// е.ц2 = «*2 — Па ‘ 4 — 31 )

Для верхнего этажа величина /?, больше и поэтому располагаемое гравитационное давление #е , будет больше. Наименьшее оно будет для отопительных приборов первого этажа. Эти различия в величинах создаваемых по высоте стояка естественных гравитационных давлений должны учитываться при увязке гидравлических сопротивлений в кольцах циркуляции в двухтрубных системах отопления.

В однотрубных системах отопления нагревательные приборы по горячей воде соединены последовательно. Поэтому в каждый последующий отопительный прибор горячая вода поступает с более низкой температурой и большей плотностью.

На схеме рис. 4.4 показаны два варианта присоединения отопительных приборов. На схеме а показан вариант последовательного прохождения горячей воды через все отопительные приборы на стояке. Между соседними по высоте отопительными приборами на стояке естественное гравитационное давление будет:

ДЯе.ц1-2 = г/г|-2(Р»г.пр2 — Р„М>. Па-

Пониженная температура воды twг пр2 и повышенная ее плотность р)уг пр2 отвечают условиям поступления горячей воды после теплоотдачи части теплоты в верхнем отопительном приборе и соединительном трубопроводе между соседними по высоте /7, 2 отопительными приборами (см. схему на рис. 4.4, а). Общее гравитационное давление в стояке а будет определяться разностью высот расположения отопительных приборов по высоте стояка /?ст и общим падением температуры горячей воды в стояке:

В однотрубной системе с замыкающими участками (рис. 4.4, б, в)

перепад гравитационного давления между соседними по высоте отопительными приборами определяется по температуре смеси

с, горячей воды, поступающей в нижестоящий отопительный прибор:

ДЯ е.ц|-2 = «*1-2(Р»г.с«2 — Р»т1>> Па ‘ 4 ‘ 34 >

Перепады температуры воды между отопительными приборами зависят от доли отдачи теплоты #гототопительным прибором на каждом этаже. Общая теплоотдача по высоте стояка равна 0t.ot.ct П Р И расчетном перепаде температур (/ит1 — / , ит2).

По значениям расчетной теплоотдачи на каждом этаже qJOJj вычисляется доля каждого отопительного прибора по формуле:

Сумма всех долей теплоотдачи по этажам Ш, — Сг2>> ° С 4 ‘ 36 )

Температура смеси горячей воды, поступающей в нижераспо-ложенные по стояку отопительные приборы, вычисляется по формуле:

Л.см Луг 1 ^т.от(Лп Лг2^’ (4-37)

где Е = 95 — 0,15(95 — 70) = 91,25 °С.

  • 2. Массовая плотность горячей воды при /и,см = 91,25 °С составляет ри,см = 964 кг/м 3 .
  • 3. По формуле (4.34) вычислим гравитационное давление между соседними по высоте стояка отопительными приборами:

Д#с ц1_2 = 9,8 • 3(964 — 962) = 58,8 Па.

Общее гравитационное давление по стояку системы отопления будет расходоваться на частичное преодоление гидравлических сопротивлений в стояке.

На рис. 4.25 представлены две схемы гидравлической увязки параллельных колец циркуляции системы отопления.

В тупиковой схеме циркуляции (рис. 4.25, а) гидравлические потери на трение и местные сопротивления вычисляются по формуле (4.25). На схеме рис. 4.25 для упрощения отсутствуют отопительные приборы и запорные краны на вертикальных стояках 5. Используем схемы на рис. 4.25 для показа принципа увязки потерь давления с учетом дополнительных гравитационных давлений водяного потока по кольцам циркуляции воды в системе отопления.

Рис. 4.25. Схемы гидравлической увязки параллельных циркуляционных колец системы отопления

а — тупиковая схема циркуляции; б — схема с попутным движением воды в подающем и обратном магистральных трубопроводах; 1 — водо-водяной пластинчатый теплообменник; 2 — подающий вертикальный магистральный трубопровод; 3 — воздухоотводчик; 4 — подающий горизонтальный магистральный трубопровод; 5 — вертикальные стояки подачи воды к отопительным приборам; 6 — обратный магистральный трубопровод; 7 — расширительный герметичный бак; 8 — циркуляционный насос

Для тупиковой схемы по рис. 4.25, а наименьшее кольцо циркуляции включает участки сети 1-2-в-д-1, а наиболее протяженное кольцо включает участки сети 1-2-г-е-1. Если принять наличие теплоизоляции и пренебречь охлаждением воды по длине подающего 4 и обратного б магистральных изолированных трубопроводов, то при расчетной теплоотдаче по стоякам I—IV присоединенных к ним отопительных приборов, дополнительные гравитационные давления в стояках, обусловленные охлаждением воды, будут одинаковыми. Поэтому равенство гидравлических потерь в кольцах циркуляции системы отопления определяется равенством результатов расчетов по формуле (4.25) для каждого кольца.

Для схемы с попутным движением воды по магистральным трубопроводам (рис. 4.25, б) длины колец циркуляции 1-2-в-д-е-1 и 1-2-г-е-1 могут быть близкими по величинам длин труб. Это облегчает увязку равенства гидравлических колец циркуляции в системе отопления.

Если магистральные трубопроводы не изолированы, как это делается при их прокладке под потолком верхнего этажа и в подвальном помещении, то от остывания воды в магистральных трубопроводах возникает дополнительное гравитационное давление, которое вычитается из общих гидравлических сопротивлений по кольцам циркуляции, вычисленное по формуле (4.25).

МЕТОДЫ ГИДРАВЛИЧЕСКОГО РАСЧЕТА СИСТЕМ ВОДЯНОГО ОТОПЛЕНИЯ

Приступать к расчету трубопроводов можно только после подготовки схемы системы отопления к расчету, а это значит, что должны быть известны длины участков, требуемые расходы на участках и местные сопротивления. В большинстве случаев значение располагаемого перепада давлений бывает задано, тогда ориентируются на него; в противном случае ориентируются на допустимые скорости движения воды в трубопроводах. В том и другом случаях эти величины дают возможность только предварительно определить диаметры трубопроводов. Окончательные значения диаметров получают после увязки полуколец.

Читать еще:  Как правильно установить термоголовку на радиатор отопления?

Метод расчета трубопроводов по удельным потерям. Этот метод заключается в раздельном определении потерь давления на трение и в местных сопротивлениях.

Расчет начинают с определения ориентировочного значения удельных потерь на трение по выражению

Rор = 0,9k Δрр.ц /Σl (5.34)

где Δрр.ц — располагаемое давление для расчета системы отопления; k — доля потерь давления на трение, принимаемая для систем с естественной циркуляцией равной 0,5, для систем с искусственной циркуляцией равной 0,65; Σl — сумма длин рассчитываемых участков, для которых давление Δрр.ц является располагаемым.

Найденная величина Rор является приближенной, но весьма удобной для ориентировки в табличных данных. При подборе диаметров труб для конкретных участков могут применяться величины, большие или меньшие Rор.

Найдя в прил. 7 полученное значение R или близкое к нему и двигаясь от него вправо, отыскивают заданный расход воды G, кг/ч (верхняя строка). Графа таблицы, в которой найдено значение заданного расхода, укажет, какому диаметру он соответствует. Под значением расхода в таблице приведена скорость движения воды υ, м/с. Произведение Rl дает значение потерь давления на трение на данном участке. По скорости определяют значение динамического давления рд = (v 2 /2) ρ (прил. 9), умножая которое на сумму коэффициентов местных сопротивлений Σξ, получают потери давления в местных сопротивлениях на рассчитываемом участке Z. Для удобства расчета запись ведут в табличной форме (табл. V.3 в примере V.2).

Метод расчета по удельным потерям наиболее точен, так как в табличных значениях удельных потерь на трение учтен характер движения теплоносителя по трубам.

Метод расчета трубопроводов по приведенным длинам. Этот метод удобно применять в тех случаях, когда основными являются потери давления на трение, а потери в местных сопротивлениях незначительны. При этом местные сопротивления заменяются эквивалентными длинами. Эквивалентной длиной называется длина трубы, на которой потери на трение равны динамическому давлению (или потерям в местном сопротивлении при коэффициенте местного со­противления ξ, равном 1). Значение эквивалентной длины определяется из уравнения

Δр =

Общие потери на участке тогда выразятся уравнением

Δруч = ( l+ lэк Σξ) = lпр R (5.36)

где lпр = (l+ lэк Σξ)— приведенная длина участка, м;

l — фактическая длина участка, м;

lэк — эквивалентная длина, м, принимаемая по табл. V. 1;

Σξ — сумма коэффициентов местных сопротивлений.

Как и с какой целью делают гидравлический расчёт системы отопления

Наличие производительного теплогенератора, качественных труб и современных радиаторов вовсе не означает, что отопление получится эффективным. Если система неправильно сконструирована, то возможны ситуации, когда работающий на полную мощность котёл не может обеспечить комфортную температуру во всех комнатах. Либо тепла хватает, но расходы на энергоносители непомерно велики. Чтобы не совершать непоправимых ошибок, необходимо разработать проект, важной часть которого является гидравлический расчёт системы отопления. Пожалуй, самой сложной частью.

Зачем нужен расчёт гидравлики системы отопления

Суть проблемы

Современные отопительные установки являются динамичными системами, которые во время эксплуатации работают в разных рабочих режимах. Теплоноситель водяного отопления циркулирует под давлением, но эта величина не является постоянной. Потери возникают на разных участках из-за конструктивных особенностей системы (трение о стенки труб, сопротивление на фитингах и т.д.). Также мы сами манипулируем давлением, когда с помощью арматуры балансируем распределение тепла по комнатам. Вручную или с помощью автоматизации систем пользователь управляет мощностью отопительного устройства, меняет уровень нагрева теплоносителя. И снова напор в сети скачет, ведь чем выше температура, тем выше давление, и наоборот.

Падение давления на конкретном участке приводит к уменьшению его тепловой производительности. Качественное отопление должно в любых условиях работать стабильно и экономично, но для этого нужно, чтобы к каждому радиатору поступало ровно столько теплоносителя, сколько необходимо для восполнения теплопотерь в помещении и поддержания заданной температуры.

Решение

Одна из основных задач разработчика – снизить возможные потери напора, что позволяет улучшить регулирование отдельных участков и системы в целом. Существует специальный термин «рост авторитета вентиля». Он означает, что местное сопротивление, которое оказывает кран или клапан на проток в регулируемой ветке, более выгодно соотносится с рабочим давлением в участке. Чем большим объёмом теплоносителя конкретный элемент управляет, тем он ценнее.

Также следует произвести гидравлическую увязку циркуляционных колец. Грамотное использование балансировочных клапанов, вентилей, регуляторов давления позволяет избежать перегрева ближних к котлу помещений и недостатка тепла в удалённых (лишние пару градусов в комнате – это перерасход тепла на уровне 5-10 процентов). Ограничивая проток в одной ветке, мы увеличиваем его для других – перераспределяем теплоноситель.

Итак, гидравлический расчёт отопления помогает инженеру-конструктору решить следующие задачи:

  • высчитать пропускную способность трубопроводов и падение напора на главном и второстепенных контурах;
  • подобрать сечение труб, если показатели расхода теплоносителя и давления в системе уже заданы;
  • рассчитать оптимальные способы балансировки ветвей системы;
  • определить необходимую мощность циркуляционного насоса.

Этапы проведения гидравлического расчёта отопления

Сбор и систематизация исходных данных

Перед началом вычислений разработчик изучает теплотехнические характеристики объекта и на основании ТЗ предварительно конструирует подходящий вариант системы отопления. Выполняют следующие мероприятия:

  • Производят тепловой расчёт, в результате которого получают информацию о необходимом количестве тепла для каждого помещения.
  • Выбирают теплогенератор и отопительные приборы.
  • Принимают решение о способах разводки трубопроводов и особенностях балансировки системы.
  • Выбирают тип труб и спецификацию регулирующей арматуры.
  • Составляют аксонометрические схемы разводки и детальные планы помещений с указанием основных исходных данных (расход теплоносителя, мощность батарей, расстановка оборудования и т.д.). Узловые точки, основной контур и отдельные участки маркируются, обозначается длина колец.

Выбор метода

Есть несколько способов выполнить расчёт гидравлики отопительной системы (как правило, все они выполняются с применением специального программного обеспечения):

  • сложением характеристик проводимости и сопротивления;
  • по удельным потерям давления;
  • по длинам трубопроводов;
  • сравнением динамических давлений;
  • по объёму транспортируемого теплоносителя.

Конкретный метод используют в зависимости от того, являются ли перепады температуры в системе динамичными или стабильными. Также берётся во внимание конфигурация отопления: некоторые способы вычислений подходят только для однотрубных схем разводки, другие – универсальны. Чаще всего применяют гидравлический расчёт трубопроводов системы отопления по потерям давления.

Расчёт сечения труб

Выбор оптимального размера труб – один из действенных методов управления рабочими характеристиками системы отопления. Так, использование труб завышенного сечения влечёт за собой:

  • рост капитальных затрат;
  • снижение рабочего давления;
  • критичное уменьшение скорости перекачки теплоносителя с большой вероятностью завоздушивания;
  • появление существенной тепловой инерции отопления.

Уменьшение диаметра трубопроводов позволяет сократить как капитальные, так и эксплуатационные затраты, но приводит к увеличению скорости потока. При показателях от 0,6 м/с в системе появляются шумы, поэтому оптимальной для жилых помещений считается скорость транспортировки теплоносителя в пределах 0,3-0,7 метров в секунду.

Для вычисления подходящего внутреннего диаметра трубопроводов используются такие данные:

  • Разница температур подачи и обратки (для двухтрубных схем обычно принимается равной 20 градусам).
  • Расход теплоносителя – в таблицах обозначается литерой «G». В реальных вычислениях и в примерах гидравлического расчёта систем отопления данная величина, как правило, является уже заданной.
  • Скорость перемещения воды/антифриза – обозначается литерой «v»
  • Плотность теплоносителя.
  • Объём теплового потока – обозначается литерой «Q».
  • Особенности участка (длина, количество секций в радиаторах и т.п.).

Определение потерь напора в системе и отдельных её участках

На каждом участке общее падение давления происходит за счёт двух основных факторов:

  1. Сопротивления трению, которое возникает из-за шероховатости и неровностей внутренних стенок труб.
  2. Местного сопротивления, которое оказывают на перекачку рабочей среды соединительные фитинги, запорно-регулирующая арматура, повороты и ветвления, сужения/расширения трубопроводов. Также тормозящий эффект создают теплообменники отопительных приборов и теплогенераторов.

Уровень потерь давления в кольце вследствие сопротивления трению зависит от:

  • скорости потока;
  • коэффициента шероховатости материала трубопроводов;
  • длины ветки;
  • диаметра и формы внутреннего сечения труб;
  • вязкости и плотности теплоносителя.

На характер местного сопротивления влияет:

  • скорость перекачки жидкости;
  • коэффициенты местного сопротивления (данные для различных узлов и устройств сведены в таблицы).

Точные вычисления производятся по общедоступным формулам, результаты о сопротивлениях в отдельных участках суммируются, и инженер получает возможность рассчитать необходимую производительность насосного оборудования.

Разработка увязки циркуляционных колец

Заключительный этап гидравлического расчёта системы отопления. Анализируя исходные и полученные на предварительных этапах данные (сопротивления, необходимые тепловые нагрузки, характеристики арматуры), конструктор должен выровнять потери давления в сети. То есть в идеале потери давления во всех кольцах системы должны быть одинаковыми. Для балансировки напора и перераспределения расхода теплоносителя применяются ручные вентили или автоматические клапаны, которые отвечают за отдельные ветки или устанавливаются на каждом отопительном приборе. Именно по результатам гидравлического расчёта выполняется предварительная настройка регулирующей арматуры.

Видео: практический урок гидравлического расчета системы отопления

Методы гидравлического расчета системы отопления.

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и зачем он нужен?

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр). Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной. Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления.

Теоретически ГР отопления основан на следующем уравнении:

Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:

  • ΔP — линейные потери давления.
  • R — удельные потери давления в трубе.
  • l — длина труб.
  • z — потери давления в отводах, запорной арматуре.

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

Отсюда получаем следующие равенства для R и z:

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления.

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления.

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 510 4 v 1.9 /d 1,32 Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Читать еще:  Какой циркуляционный насос лучше выбрать для отопления

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления.

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач. Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ. Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

Итоги статьи.

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции. По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ. Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас. По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект. На этом пока все, жду ваших вопросов в комментариях.

Гидравлический расчет системы отопления: просто о сложном

Что представляет собой гидравлический расчет системы отопления? Какие конкретно величины нуждаются в подсчетах? Наконец, основное: как вычислить их, не располагая правильными значениями гидравлического сопротивления всех участков, элементов и отопительных приборов запорной арматуры? Позволяйте разбираться.

Что рассчитываем

Для любой системы отопления наиболее значимый параметр — ее тепловая мощность.

  • Температурой теплоносителя.
  • Тепловой мощностью отопительных устройств.

Увидьте: в документации последний параметр указывается для фиксированной дельты температур между воздухом и температурой теплоносителя в отапливаемом помещении в 70 С. Уменьшение дельты температур в два раза приведет к двукратному уменьшению тепловой мощности.

Способы вычисления тепловой мощности мы пока покинем за кадром: им посвящено достаточно тематических материалов.

Но чтобы обеспечить перенос тепла от автострады либо котла к отопительным устройствам, серьёзны еще два параметра:

  1. Внутреннее сечение трубопровода, привязанное к его диаметру.

  1. Скорость потока в этом трубопроводе.

В автономной отопительной системе с принудительной циркуляцией принципиально важно знать еще несколько значений:

  1. Гидравлическое сопротивление контура. Расчет гидравлического сопротивления системы отопления позволит найти требования к напору, создаваемому циркуляционным насосом.
  2. Расход теплоносителя через контур, определяющийся производительностью циркуляционного насоса отопительной системы при соответствующем напоре.

Неприятности

Как говорят в Одессе, «их имеется».

Чтобы вычислить полное гидравлическое сопротивление контура, необходимо учесть:

  • Сопротивление прямых участков труб. Оно определяется их материалом, внутренним диаметром, степенью шероховатости и скоростью потока стенок.

  • Сопротивление перехода диаметра и каждого поворота.
  • Сопротивление каждого элемента запорной арматуры.
  • Сопротивление всех отопительных устройств.
  • Сопротивление теплообменника котла.

Собрать воедино все нужные данные очевидно станет проблемой кроме того в самой несложной схеме.

Формулы

К счастью, для автономной отопительной системы гидравлический расчет отопления возможно выполнен с приемлемой точностью и без углубления в дебри.

Скорость потока

С нижней стороны ее ограничивает рост перепада температур между подачей и обраткой, а заодно и повышенная возможность завоздушивания. Стремительный поток вытеснит воздушное пространство из перемычек к автоматическому воздухоотводчику; медленный же с данной задачей не справится.

Иначе, через чур стремительный поток неизбежно породит гидравлические шумы. Элементы запорной арматуры и повороты розлива станут источником раздражающего шума.

Для отопления диапазон приемлемой скорости потока берется от 0,6 до 1,5 м/с; наряду с этим подсчет других параметров в большинстве случаев выполняется для значения 1 м/с.

Диаметр

Его при известной тепловой мощности несложнее всего подобрать по таблице.

Внутренний диаметр трубы, ммТепловой поток, Вт при Dt = 20С
Скорость 0,6 м/сСкорость 0,8 м/сСкорость 1 м/с
8245332704088
10383251096387
12551873589197
1586221149614370
20153282043825547
25239503193439917
32392405232065401
406131381751102188
5095802127735168669

Напор

В упрощенном варианте он рассчитывается по формуле H=(R*I*Z)/10000.

  • H — искомое значение напора в метрах.
  • I — утрата напора в трубе, Па/м. Для прямого участка трубы расчетного диаметра он принимает значение в диапазоне 100-150.
  • Z — дополнительный компенсационный коэффициент, который зависит от наличия в контуре дополнительного оборудования.
Элементы контураЗначение коэффициента
фитинги и Арматура1,3
клапаны и Термостатические головки1,7
Смеситель с трех- либо двухходовым клапаном1,2

В случае если в системе присутствует пара элементов из перечня, соответствующие коэффициенты перемножаются. Так, для системы с шаровыми вентилями, резьбовыми фитингами для труб и термостатом, регулирующим проходимость розлива, Z=1,3*1,7=2,21.

Производительность

Инструкция по расчету своими руками производительности насоса также не отличается сложностью.

Производительность вычисляется по формуле G=Q/(1,163*Dt), в которой:

  • G — производительность в м3/час.
  • Q -тепловая мощность контура в киловаттах.
  • Dt — отличие температур между подающим и обратным трубопроводами.

Пример

Давайте приведем пример гидравлического расчета системы отопления для следующих условий:

  • Дельта температур между подающим и обратным трубопроводом равна стандартным 20 градусам.
  • Тепловая мощность котла — 16 КВт.
  • Неспециализированная протяженность розлива однотрубной ленинградки — 50 метров. Отопительные устройства подключены параллельно розливу. Термостаты, разрывающие розлив, и вторичные контуры со смесителями отсутствуют.

Минимальный внутренний диаметр в соответствии с вышеприведенной таблице равен 20 миллиметрам при скорости потока не меньше 0,8 м/с.

Полезно: современные циркуляционные насосы довольно часто имеют ступенчатую либо, что эргономичнее, плавную регулировку производительности. В последнем случае цена устройства немного выше.

Оптимальный напор для нашего случая будет равен (50*150+1,3)/10000=0,975 м. Фактически, как правило параметр не испытывает недостаток в расчете. Перепад в системе отопления многоквартирного дома, снабжающий в ней циркуляцию — всего 2 метра; как раз таково минимальное значение напора большинства насосов с мокрым ротором.

Производительность вычисляется как G=16/(1,163*20)=0,69 м3/час.

Заключение

Сохраняем надежду, что приведенные методики расчетов окажут помощь читателю вычислить параметры собственной отопительной системы, не забираясь в дебри сложных формул и справочных данных. Как неизменно, прикрепленное видео предложит дополнительную данные. Удач!

Лекция 7

Гидравлический расчёт систем отопления

Общие положения [1, с.151-159]

Системы отопления (СО) представляют собой разветвлённую сеть теплопроводов, выполняющих важную функцию распределения теплоносителя по отопительным приборам. Целью гидравлического расчёта является определение диаметров теплопроводов при заданной тепловой нагрузке и расчётном циркуляционном давлении, установленном для данной системы.

При движении реальной жидкости по трубам всегда имеют место потери давления на преодоление сопротивления двух видов – на трение и в местных сопротивлениях. К местным сопротивлениям относятся тройники, крестовины, отводы, вентиля, краны, отопительные приборы, котлы и т.д. (другими словами, это локальные элементы системы, в которых скорость движения теплоносителя изменяется или по величине, или по направлению).

Потери давления Rт, Па, на преодоление трения на участке теплопровода с постоянным расходом теплоносителя и неизменным диаметром, определяется по формуле:

, (7.1)

где: d – диаметр теплопровода, м;

 — коэффициент гидравлического трения;

w – скорость движения теплоносителя, м/с;

 — плотность теплоносителя, кг/м 3 ;

R – удельные потери давления, Па/м;

l — длина участка теплопровода, м.

Потери давления на преодоление местных сопротивлений, Па, определяются так:

, (7.2)

где:  – сумма коэффициентов местных сопротивлений на участке теплопровода.

Суммарные потери давления, возникающие при движении теплоносителя в теплопроводе циркуляционного кольца, должны быть меньше расчётно-циркуляционного давления, устанавливаемого для данной системы. Под расчётным циркуляционным давлением понимается давление, необходимое для поддержания принятого гидравлического режима СО.

При расчёте главного циркуляционного кольца (наиболее неблагоприятного в гидравлическом отношении циркуляционного контура) рекомендуется предусматривать запас давления на неучтённые сопротивления, но не более 10% расчётного давления:

(Rl+Z)гцк=0,9рр. (7.3)

Методика гидравлического расчёта [1, с.159-171]

1. До гидравлического расчёта теплопроводов выполняют аксонометрическую схему СО со всей запорно-регулирующей арматурой. К составлению такой схемы приступают после того, как:

— подсчитана тепловая мощность СО здания;

— выбран тип отопительных приборов и определено их число для каждого помещения;

— размещены на поэтажных планах здания отопительные приборы, подающие и обратные стояки, а на планах чердака и подвала – подающие и обратные магистрали;

— выбрано место для теплового пункта или котельной;

— показано на плане чердака или верхнего этажа (при совмещённой крыше) размещение расширительного бака и приборов воздухоудаления.

На планах этажей, чердака и подвала подающие и обратные стояки СО должны быть пронумерованы, а на аксонометрической схеме кроме стояков нумеруют все расчётные участки циркуляционных колец, а также указывают тепловую нагрузку и длину каждого участка.

Расчётным участком называют участок теплопровода с неизменным расходом теплоносителя.

2. Выбирают главное циркуляционное кольцо. В тупиковых схемах однотрубных систем за главное принимается кольцо, проходящее через дальний стояк, а в двухтрубных системах – кольцо, проходящее через нижний прибор дальнего стояка.

3. Определяют расчётное циркуляционное давление рр.

рр=рнас+ре=рнас+E(ре.пр+ре.тр). (7.4)

где: рнас – циркуляционное давление, создаваемое насосом или элеватором, Па;

E – коэффициент, определяющий долю максимального естественного давления, которую целесообразно учитывать в расчётных условиях;

ре.пр – давление, возникающее в системе за счёт охлаждения воды в отопительных приборах, Па;

ре.тр – давление, возникающее в системе за счёт охлаждения воды в теплопроводах, Па.

4. При расчёте по методу удельных потерь давления для предварительного выбора диаметров теплопроводов определяют среднее значение удельного падения давления по главному циркуляционному кольцу:

, (7.5)

где: k – коэффициент, учитывающий долю потери давления на местные сопротивления от общей величины расчётного циркуляционного давления (k=0,35 – для СО с искусственной циркуляцией, k=0,5 – для СО с естественной циркуляцией);

l – общая длина расчётного циркуляционного кольца;

рр – расчётное циркуляционное давление, Па.

5. Определяют расходы воды на расчётных участках Gуч, кг/ч:

, (7.6)

где: Qуч – тепловая нагрузка участка, составленная из тепловых нагрузок отопительных приборов, обслуживаемых протекающей по участку водой, Вт;

c – теплоёмкость воды, кДж/(кгК);

tгtо – перепад температур воды в системе, С;

1 и 2 – коэффициенты, учитывающие условия установки отопительных приборов;

3,6 – коэффициент перевода Вт в кДж/ч.

Ориентируясь на полученные значения Rср и Gуч с помощью специальных таблиц можно подобрать оптимальные диаметры труб расчётного кольца. Обычно все данные, получаемые при расчёте теплопровода, заносят в специальную таблицу.

При расчёте отдельных участков теплопровода необходимо иметь в виду следующее:

— местные сопротивления тройников и крестовин относят к расчётным участкам с меньшим расходом теплоносителя;

— местные сопротивления отопительных приборов, котлов и подогревателей учитывают поровну в каждом примыкающем к ним участке.

Если по произведённому расчёту с учётом запаса до 10% расходуемое давление в системе будет больше или меньше расчётного давления рр, то на отдельных участках кольца следует изменить диаметры труб.

После расчёта главного циркуляционного кольца рассчитывают параллельные циркуляционные кольца, которые состоят из участков главного кольца (уже рассчитанных) и дополнительных (не общих) участков, ещё не рассчитанных. Производится «увязка» потерь давления, т.е. получение равенства потерь давления на параллельно соединённых дополнительных участках других колец и не общих участках главного кольца.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector